소스 조금만 추가좀해주세요 ㅜㅜ 길기만 하지 어려운거 아닌거같아요 ;;
YourWay
이런 소스가 있는데요..별다른건 아니고.. 텍스트파일에 행렬 입력하고실행시키면 여인수행렬, 행렬값, 역행렬,수반행렬이 출력되면 되는데요;!!!!!!!!!!이미 식은 밑에 다 있는데!!!!!!!!!!!!텍스트파일에 입력하게 하는 방법을 추가하고싶어요..또 실행하면 역행렬값만나오거든뇨수반행렬, 여인수행렬, 행렬값도 실행파일켜면 뜨게해주세요 ;#include stdio.h
#include stdlib.h
#include cmathtypedef struct _MATRIX
{
double **m_data;
int m_size;
}MATRIX;void initMatrix(MATRIX *A, int n);//동적배열 생성함수
void deleteMatrix(MATRIX *A);//동적배열 해제함수
void inputMatrix(MATRIX *A);//행렬 값 입력함수
void printMatrix(MATRIX matrix);//행렬 값 출력함수
double determinant(MATRIX matrix);//행렬식 계산함수
MATRIX transpose(MATRIX matrix); //전치행렬 계산함수
MATRIX minorMatrix(MATRIX matrix, int col, int row);//소행렬식 계산함수
MATRIX cofactorMatrix(MATRIX matrix);//여인자행렬 계산함수
MATRIX adjoint(MATRIX matrix);//수반행렬 계산함수
MATRIX inverseMatrix(MATRIX matrix);//역행렬 계산함수int main(void)
{
MATRIX matrix;
MATRIX inverse;int n;
double det = 0;printf(******************************************************************\n);
printf( 수반행렬, 여인수행렬,역행렬,행렬식의값 \n);
printf(******************************************************************\n\n);
printf( 행렬의 크기입력: );
scanf(%d, &n);initMatrix(&matrix, n);
initMatrix(&inverse, n);inputMatrix(&matrix);det = determinant(matrix);inverse = inverseMatrix(matrix);printf(\n입력한 행렬의 행렬식 값 \n);
printf( Det(A) = %.3lf\n\n, det);printf(역행렬 =\n);
printMatrix(inverse);
printf(\n);deleteMatrix(&matrix);
deleteMatrix(&inverse);return 0;
}void initiMatrix (MATRIX *A, int n)
{
int i = 0;A-m_data = (double **)malloc(sizeof(double*) * n);for( i = 0; i n; i++)
{
A-m_data[i] = (double*)malloc(sizeof(double) *n);
}A-m_size = n;
}void deleteMatrix (MATRIX *A)
{
int i = 0;for( i = 0 ; i A-m_size ; i++ )
{
free(A-m_data[i]);
}
free (A-m_data);
}void inputMatrix(MATRIX* A)
{
int i = 0, j = 0;
double input = 0;printf(\n);
printf(행렬의 값을 입력하세요.\n);for( i = 0; i A-m_size; i++)
{
for( j = 0; j A-m_size; j++ )
{
fflush(stdin);
printf(%d X %d 행렬의 값을 입력하세요: , i+1, j+1);
scanf(%lf, &input);
A-m_data[i][j] = input;
}
}
}void printMatrix(MATRIX matrix)
{
int i = 0, j = 0;for( i = 0; i matrix.m_size; i++)
{
printf(\t|\t);
for( j = 0; j matrix.m_size; j++)
{
printf(%.3lf \t, matrix.m_data[i][j]);
}
printf(|\n);
}
}double determinant(MATRIX matrix)
{
int i = 0;
double det = 0;
int sign = 1;if( matrix.m_size == 2)
{
det = matrix.m_data[0][0] * matrix.m_data[1][1] -matrix.m_data[1][0] * matrix.m_data[0][1];return det;
}
for ( i = 0; i matrix.m_size ; i++)
{
MATRIX minor;
initMatrix(&minor, matrix.m_size);minor = minorMatrix(matrix, 0, i);
det = det + sign * matrix.m_data[i][0] * determinant(minor);
sign = sign * -1;
}
return det;
}MATRIX transpose(MATRIX matrix)
{
MATRIX Result;
int i, j;initMatrix( &Result, matrix.m_size);for( i = 0; i matrix.m_size ; i++)
{
for( j = 0; j matrix.m_size ; j++)
{
Result.m_data[i][j] = matrix.m_data[j][i];
}
}
return Result;
}MATRIX minorMatrix(MATRIX matrix, int col, int row)
{
MATRIX Result;
int rowindex = 0;
int colindex = 0;
int i, j;initMatrix( &Result, matrix.m_size - 1);for( i = 0; i matrix.m_size ; i++)
{
for( j = 0; j matrix.m_size ; j++)
{
if( i !;if( i != row && j != col)
{
Result.m_data[rowindex][colindex] = matrix.m_data[i][j];
colindex++;
}
}
if( i != row && j != col)
{
colindex = 0;
rowindex++;
}
}
return Result;
}
MATRIX cofactorMatrix(MATRIX matrix)
{
MATRIX Result;
int i, j;initMatrix(&Result, matrix.m_size);for( i = 0; i matrix.m_size ; i++)
{
for( j = 0; j matrix.m_size ; j++)
{
Result.m_data[j[i] = determinant(minorMatrix(matrix , i , j));
}
}
return Result;
}MATRIX adjoint(MATRIX matrix)
{
MATRIX Result;
MATRIX confactor;
MATRIX transposed;
int i,j;
double ipow = 1;initMatrix(&Result , matrix.m_size);
initMatrix(&confactor, matrix.m_size);
initMatrix(&transposed, matrix.m_size);confactor = confactorMatrix(matrix);
transposed = transpose(confactor);for( i = 0 ; i matrix.m_size; i++)
{
for( j = 0; j matrix.m_size ; j++)
{
ipow = pow(-1, (i+j));
Result.m_data[i][j] = ipow * transposed.m_data[i][j];
}
}
deleteMatrix(&confactor);
deleteMatrix(&transposed);return Result;
}MATRIX inverseMatrix(MATRIX matrix)
{
MATRIX Result;
MATRIX temp;
double det;
int i, j;det = determinant(matrix);initMatrix(&temp, matrix.m_size);
initMatrix(&Result, matrix.m_size);if( matrix.m_size ==2)
{
temp.m_data[0][0] = matrix.m_data[1][1];
temp.m_data[1][1] = matirx.m_data[0][0];
temp.m_data[0][1] = -(matrix.m_data[0][1]);
temp.m_data[1][0] = -(matrix.m_data[1][0]);for( i = 0; i matrix.m_size; i++)
{
for( j = 0; j matrix.m_size; j++)
{
Result.m_data[i][j] = (double)((double)1/det)*temp.m_data[i][j];
}
}
deleteMatrix(&temp);return Result;
}
temp = adjoint(matrix);for ( i = 0; i matrix.m_size ; i++)
{
for( j = 0; j matrix.m_size ; j++)
{
Result.m_data[i][j] = (double)((double)1/det)*temp.m_data[i][j];
}
}
deleteMatrix(&temp);return Result;
}